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Abstract

The theory of portfolio choice holds that investors balance risk and reward
in their investment decisions. We explore the relationship between investors’
attitudes towards taking risk and their objectives for managing the risk they
take on. Working in a classical theoretical model, we calculate the distribution
and density functions of an investor’s optimal wealth process and prove new
mathematical results for these functions under general risk preferences. By
applying our results to a constant relative risk aversion investor who has a
targeted value at risk or expected shortfall at a given future time, we are able
to infer the investor’s risk preferences and prescribe how to invest to achieve
the desired goal. Then, drawing analogies to the option greeks, we define
and derive closed-form expressions for “portfolio greeks,” which measure the
sensitivities of an investor’s optimal wealth to changes in the cumulative excess
stock return, time, and market parameters. Like option greeks, portfolio greeks
can be used in the risk management of investors’ portfolios.
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1 Introduction
This paper contributes to investment management in a log-normal market by pro-
viding a study of the optimal wealth process in the classical Merton problem on
a finite trading horizon. The analysis is based on a stochastic representation (22)
of the optimal wealth process in terms of a space-time harmonic function of the
underlying Brownian motion, market price of risk, and investor’s initial wealth. A
similar stochastic representation exists for the optimal portfolio process (see (23)).
These representations were first derived in Musiela and Zariphopoulou (2010) for an
alternative class of risk preferences (the so-called forward investment performance
processes) and were recently used in Källblad and Zariphopoulou (2014) to study
qualitative properties of the optimal portfolio process in a multi-asset log-normal
model.

We use the stochastic representations to study the optimal wealth and portfolio
processes in more detail. First, we derive novel and explicit representation formulae
for the optimal wealth and portfolio processes across different utilities. We show that,
for two arbitrary utilities and with modified initial conditions, the associated optimal
wealth processes can be written in terms of one another using a deterministic function
that solves a linear parabolic problem (see (30)–(32)). The analogous transformation
for the respective optimal portfolio processes is similar (see (33)).

Next, we use the stochastic representations to compute the cumulative distribu-
tion and density functions of the optimal wealth process at a fixed time. We show
that these functions can be expressed in terms of the space-aggregate local absolute
risk aversion and the time-aggregate marginal local absolute risk tolerance of the
investor (see (38) and (39)). For general utilities, we examine how properties of the
absolute risk tolerance coefficient affect, for all intermediate times, the behavior of
the cumulative distribution function and, in particular, the probability of the optimal
wealth falling below the initial wealth. For the former, we derive universal bounds
that depend only on bounds of the slope of the absolute risk tolerance coefficient
(see (43) and (44)). For the latter, we show that it is exclusively the concavity or
convexity of risk tolerance that determines the monotonicity of the probability of
falling below initial wealth (see (47)). Using the expressions for the cumulative
distribution and density functions, we represent the expectation of functionals of
the optimal wealth process at a fixed time in terms of a convolution evaluated at a
specific point (see (51)). As an application, we compute the mean and variance of
the optimal wealth process at a fixed time.

We continue our study of the optimal wealth process by considering applications
to risk management. We use the stochastic representation of the optimal wealth to
express its quantile function at a fixed time in terms of the associated harmonic
function (see (57)), which, in turn, is used to produce explicit representation formulae
for the investor’s value at risk (VaR) and expected shortfall (ES) of his optimal
wealth (see (59) and (64)). We then look at the interplay between the investor’s risk
preferences and the investment targets he sets, building on work initiated in Musiela
and Zariphopoulou (2010) and Monin (2014). We study cases in which the investor
sets a target for the VaR or the ES of his optimal wealth. Specifically, we examine
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how to infer from such targets the investor’s relative risk aversion parameter for
CRRA utilities. We show that, for a CRRA investor, a single VaR target at any
intermediate trading time uniquely determines the investor’s implied relative risk
aversion coefficient, for which we produce an explicit formula (see (61)). We also
discuss inferring the relative risk aversion for a CRRA investor who targets the ES of
his wealth, showing that, under a mild additional assumption, the investor’s relative
risk aversion coefficient can be found by numerical inversion.

Finally, we examine sensitivities of the optimal wealth process, drawing analogies
between them and similar quantities in derivatives. For this, we first take the stock’s
cumulative excess return, rather than its level, as the natural “underlying” and
express the optimal wealth process as a deterministic function of this underlying
(see (69)). In analogy to option greeks, we then define “portfolio greeks” and provide
explicit representation formulae in terms of the investor’s marginal local absolute
risk tolerance, his optimal wealth and portfolio processes, and the stock’s cumulative
excess return (see (80), (81), (87)–(89)). We conclude by deriving sensitivities for
the cumulative excess return on the optimal wealth, rather than its level, and show
how these sensitivities relate to the beta of the investor’s portfolio.

The paper is organized as follows. We introduce the model in section 2. In
section 3, we recall the stochastic representations for the optimal wealth and portfolio
processes and consider these processes across different utilities. In section 4, we
provide results on the cumulative distribution and density functions, study the
probability of falling below the investor’s initial wealth, and provide a representation
result for the expectation of a functional of the optimal wealth at a fixed time. In
section 5, we study the quantile function of the optimal wealth at a fixed time and,
in turn, the VaR and expected shortfall of the optimal wealth. Finally, in section 6
we analyze the sensitivities of the optimal wealth process.

2 The model and its optimal wealth and portfolio
processes

We briefly recall the classical Merton problem (Merton (1969)), its value function
and its solution. Trading takes place in [0, T ] , with the horizon T being arbitrary
but fixed. The market environment consists of one riskless asset and one risky stock,
whose price, St, t ≥ 0, is modeled as a log-normal process,

dSt = St (µdt+ σdWt) , (1)

with S0 > 0. The process Wt, t ≥ 0, is a standard Brownian motion, defined on a
filtered probability space (Ω,F , (Ft),P) . The underlying filtration is taken to be Ft
= σ (Ws : 0 ≤ s ≤ t) . The coefficients µ and σ are positive constants. The riskless
asset, the savings account, offers constant interest rate r > 0. We denote

λ =
µ− r
σ

, (2)

and we assume, without loss of generality, that λ > 0.
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Starting at t ∈ [0, T ) with initial wealth x > 0, the investor invests at any time
s ∈ (t, T ] in the riskless and risky assets. The present value of the amounts invested
are denoted, respectively, by π0

s and πs. The present value of his investment is then
given by Xπ

s = π0
s + πs, s ∈ (t, T ]. We will refer to Xπ

s as the discounted wealth
generated by the strategy

(
π0
s , πs

)
. The investment strategies play the role of control

processes and are taken to be self-financing. We easily deduce that the discounted
wealth satisfies

dXπ
s = σπs (λds+ dWs) , (3)

for s ∈ (t, T ], with initial wealth Xt = x. An investment process πs, s ∈ [t, T ],

is admissible if πs ∈ Fs, E
(∫ T

t
π2
sds
)
< ∞ and the associated wealth remains

non-negative, Xπ
s ≥ 0, s ∈ [t, T ]. We denote the set of admissible strategies by A.

The investor’s utility function at T is given by U : R+ → R+, and is assumed
to be a strictly concave, strictly increasing and C4 (0,∞) function, satisfying the
standard Inada conditions

lim
x→0

U ′(x) =∞ and lim
x→∞

U ′(x) = 0. (4)

We recall the inverse, I : R+ → R+, of the marginal utility U ′,

I (x) = (U ′)
(−1)

(x) , (5)

and assume that, for some ε > 0, it satisfies the polynomial growth condition,

I (x) ≤ ε+ x−ε. (6)

The value function is then defined as the maximal expected utility,

u(x, t) = sup
π∈A

E (U (Xπ
T )|Xπ

t = x) , (7)

where Xπ
s , s ∈ [t, T ] , solves (3).

The above stochastic optimization problem has been widely studied and com-
pletely solved. We provide the main results below without proof (see, for example,
Karatzas et al. (1987) and Björk (2009)).

Proposition 2.1. i) The value function u ∈ C4,1 (R+ × [0, T ]) is strictly increasing
and strictly concave in the spatial variable, and solves the Hamilton-Jacobi-Bellman
(HJB) equation,

ut −
1

2
λ2

u2x
uxx

= 0, (8)

with u(x, T ) = U(x) and λ as in (2).
ii) The optimal portfolio process is given, for s ∈ [t, T ] , by

π∗,xs = π∗ (X∗,xs , s) , (9)

where the optimal feedback portfolio function π∗ : R+ × [0, T ]→ R+ is given by

π∗(x, t) = −λ
σ

ux(x, t)

uxx(x, t)
, (10)
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with X∗,xs , s ∈ [t, T ] , being the optimal wealth process solving (3) with π∗,xs as in
(9).

Associated with any utility function are the (absolute) risk tolerance coefficient
and the (absolute) risk aversion coefficient, denoted respectively by the functions
RT (x) and RA (x) , and given, for x > 0, by

RT (x) = − U
′ (x)

U ′′ (x)
and RA (x) = −U

′′ (x)

U ′ (x)
. (11)

We assume that the risk tolerance coefficient RT (x) is strictly increasing for x > 0
and satisfies R(0) := limx↓0 RT (x) = 0 (see, among others, Xia (2011) and Källblad
and Zariphopoulou (2014)).

For intermediate trading times t ∈ [0, T ), one then defines the associated local,
or indirect, absolute coefficients. The local (absolute) risk tolerance, r (x, t) , and the
local (absolute) risk aversion, γ (x, t) , are given, respectively, by

r (x, t) = − ux(x, t)

uxx(x, t)
and γ (x, t) = −uxx(x, t)

ux(x, t)
, (12)

with u being the value function (7). Therefore (cf. (10) and (12)), the optimal
portfolio process, π∗s , is given, for s ∈ [t, T ] , by

π∗,xs =
λ

σ
r (X∗,xs , s) . (13)

3 The optimal wealth process
We review the representation results for the optimal wealth and portfolio processes
used in Källblad and Zariphopoulou (2014). As (22) and (24) show, these processes
are represented as harmonic functionals of the current value of the Brownian motion
that drives the stock price process.

Such representations were first obtained by Musiela and Zariphopoulou (2010)
under forward investment performance criteria and general Itô price processes. We
remark that in Musiela and Zariphopoulou (2010), the transformation analogous to
(14) does not involve the terminal horizon, since forward criteria are defined for all
trading times. Therein, however, time is rescaled while herein it is not, as rescaling
time would have resulted in an artificially altered terminal investment horizon.

We start with some preliminary results (see Källblad and Zariphopoulou (2014,
Proposition 4)).

Proposition 3.1. Let I : R+ → R+ be given by (5) and assume that it satisfies the
growth condition (6). Let H : R× [0, T ]→ R+ be defined by

ux (H(x, t), t) = exp

(
−x− 1

2
λ2(T − t)

)
, (14)

where u (x, t) is the value function (cf. (7)) and λ is as in (2). Then, the following
assertions hold.
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i) The function H(x, t) solves the heat equation

Ht +
1

2
λ2Hxx = 0 (15)

with terminal condition
H(x, T ) = I

(
e−x

)
. (16)

ii) For each t ∈ [0, T ] , the function H(x, t) is strictly increasing in x and is of
full range, that is, limx→−∞H (x, t) = 0 and limx→∞H (x, t) =∞.

iii) The local absolute risk tolerance function r ∈ C2,1(R+ × (0, T ]) satisfies

r (x, t) = Hx

(
H(−1) (x, t) , t

)
, (17)

where H(x, t) solves (15) and (16).

The following proposition provides results on equations that the spatial inverse
H(−1) satisfies as well as on the representation of its temporal and spatial increments.

Proposition 3.2. The spatial inverse H(−1) : R+ × [0, T ]→ R satisfies

H
(−1)
t (x, t) =

1

2
λ2rx (x, t) (18)

and
H(−1)
x (x, t) = γ (x, t) , (19)

where r(x, t) and γ(x, t) are as in (12). Therefore, the temporal and spatial incre-
ments of H(−1) can be written as

H(−1) (x, t)−H(−1) (x, 0) =
1

2
λ2
∫ t

0

rx (x, s) ds (20)

and
H(−1) (y, t)−H(−1) (x, t) =

∫ y

x

γ (z, t) dz. (21)

Proof. Assertion (18) follows from

H
(−1)
t (x, t) = −

Ht

(
H(−1) (x, t) , t

)

Hx

(
H(−1) (x, t) , t

)

=
1

2
λ2
Hxx

(
H(−1) (x, t) , t

)

Hx

(
H(−1) (x, t) , t

) =
1

2
λ2rx (x, t) ,

where we used (15) and (17). The rest of the proof follows easily.

Next, we provide the stochastic representations for the optimal wealth and port-
folio processes. For its proof see Musiela and Zariphopoulou (2010) and Källblad and
Zariphopoulou (2014).1 For convenience, we state all results throughout assuming
that the initial time t = 0.

1As is mentioned in Källblad and Zariphopoulou (2014), one could use standard duality results
to derive (22) and (24). The construction is in reverse order, in that the wealth representation (22)
is established first and (23) then follows from a direct application of Itô’s formula and (3).
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Proposition 3.3. The optimal wealth X∗,xt , t ∈ [0, T ] , starting at x at time 0, and
the associated optimal portfolio π∗,xt are given, respectively, by the processes

X∗,xt = H
(
H(−1)(x, 0) + λ2t+ λWt, t

)
(22)

and
π∗,xt =

λ

σ
Hx

(
H(−1)(X∗,xt , t), t

)
(23)

=
λ

σ
Hx

(
H(−1)(x, 0) + λ2t+ λWt, t

)
, (24)

where the function H satisfies (15) and (16).

Example 1 (CRRA utility). Let U(x) be given by

U(x) =

{
x1−γ−1
1−γ , γ > 0, γ 6= 1,

log x, γ = 1.
(25)

Then, the function I(x) (cf. (5)) is given by I(x) = x−1/γ and, in turn,

H(x, t) = exp

(
x

γ
+

1

2

λ2

γ2
(T − t)

)
. (26)

Using that H(−1)(x, 0) = γ log y − 1
2
λ2

γ T and Hx(x, t) = 1
γH(x, t), (22) and (23)

give the familiar formulae

X∗,xt = x exp

(
λ2

γ

(
1− 1

2γ

)
t+

λ

γ
Wt

)
(27)

and
π∗,xs =

λ

σγ
X∗,xt . (28)

Example 2. The results in Example 1 can be easily generalized when the inverse
marginal function I (x) (cf. (5)) is given by I(x) =

∑N
i=1 x

−1/γi , γi > 0, i = 1, . . . , N.
Then, we find that

H(x, t) =

N∑

i=1

exp

(
x

γi
+

1

2

λ2

γ2i
(T − t)

)
,

X∗,xt =
∑N
i=1 e

N(x,t;T ) and π∗,xs = λ
σ

∑N
i=1

1
γi
eN(x,t;T ), whereN (x, t;T ) = H(−1)(x,0)

γi
+

λ2

γi
(1− 1

2γi
)t+ λWt + 1

2
λ2

γ2
i
T. Note though that analogous results do not hold when

U ′(x) =
∑N
i=1 x

−γi , γi > 0, i = 1, . . . , N .

7



3.1 Optimal wealth processes across different utilities
Using the stochastic formulae (22) and (23) we are able to associate the optimal
wealth and portfolio processes corresponding to different utility functions. Specifically,
the optimal processes for two arbitrary utility functions can be expressed as a
deterministic transformation of each other with appropriately modified initial wealths.

Proposition 3.4. Let U and Û be two utility functions and g : R+ → R+ be defined
by

U ′ (x) = Û ′ (g (x)) . (29)

i) Let X∗,xt and X̂∗,xt be the associated wealth processes, starting at wealth x at
time t = 0. Let r (x, t) be the local absolute risk tolerance function associated with
utility U (cf. (12)). Then,

X̂∗,xt = G
(
X
∗,G(−1)(x,0)
t , t

)
, (30)

where the function G : R+ × [0, T ]→ R+ satisfies

Gt (x, t) +
1

2
λ2r2 (x, t)Gxx (x, t) = 0 (31)

with terminal condition
G (x, T ) = g (x) . (32)

ii) Let π∗,xt and π̂∗,xt be the associated optimal portfolio processes and let π∗(x, t)
and π̂∗(x, t) be the corresponding optimal feedback portfolio functions. Then,

π̂∗,xt = Gx

(
X
∗,G(−1)(x,0)
t , t

)
π
∗,G(−1)(x,0)
t (33)

and
π̂∗(x, t) = Gx(G(−1)(x, t), t)π∗

(
G(−1)(x, t), t

)
. (34)

Proof. i) First note that the function g is well defined, since g (x) = Î (U ′ (x)) ,

with Î =
(
Û
′
)(−1)

. Next, let u (x, t) and û (x, t) be the value functions (cf. (7))

corresponding to utilities U(x) and Û(x), and H (x, t) and Ĥ (x, t) be the associated
harmonic functions, defined in (14). Then, for h = H(−1), Ĥ(−1) and vx = ux, ûx,
we have

h (x, t) = − log vx (x, t)− 1

2
λ2 (T − t) . (35)

Define G : R+ × [0, T ]→ R+ such that, for t ∈ [0, T ] ,

ux (x, t) = ûx (G (x, t) , t) . (36)

We have that G (x, T ) = g (x) and, for t ∈ [0, T ) , G (x, t) is well defined due to the
invertibility of û (x, t) in the spatial variable. From (35) we deduce that

Ĥ (x, t) = G (H (x, t) , t) . (37)
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In turn,

Ĥt (x, t) +
1

2
λ2Ĥxx (x, t) = Gx (H, t)

(
Ht (x, t) +

1

2
λ2Hxx (x, t)

)

+Gt (H, t) +
1

2
λ2H2

x (x, t)Gxx (H, t) .

Because both H (x, t) and Ĥ (x, t) solve (15), we obtain

Gt (x, t) +
1

2
λ2H2

x

(
H(−1) (x, t) , t

)
Gxx (x, t) = 0,

and using (17) we deduce (31). From the stochastic representation (22) and (37),
we then have

X̂∗,xt = Ĥ
(
Ĥ(−1) (x, 0) + λ2t+ λWt, t

)

= G
(
H
(
Ĥ(−1) (x, 0) + λ2t+ λWt, t

)
, t
)

= G
(
H
(
H(−1)

(
G(−1)(x, 0), 0

)
+ λ2t+ λWt, t

)
, t
)

= G
(
X
∗,G(−1)(x,0)
t , t

)
.

ii) For the corresponding risk tolerance functions, r(x, t) and r̂(x, t), we obtain

r̂(x, t) = Ĥx(Ĥ(−1)(x, t), t)

= Gx(H(Ĥ(−1)(x, t), t), t)Hx(Ĥ(−1)(x, t), t)

= Gx(G(−1)(x, t), t)Hx(H(−1)(G(−1)(x, t), t), t)

= Gx(G(−1)(x, t), t) · r(G(−1)(x, t), t),

where we used that Ĥx(x, t) = Gx(H(x, t), t)Hx(x, t). We then have, recalling that
X̂∗,xt = G

(
X
∗,G(−1)(x,0)
t , t

)
,

π̂∗,xt =
λ

σ
r̂(X̂∗,xt , t)

=
λ

σ
Gx

(
G(−1)

(
X̂∗,xt , t

)
, t
)
r
(
G(−1)(X̂∗,xt , t), t

)

=
λ

σ
Gx

(
G(−1)

(
G
(
X
∗,G(−1)(x,0)
t , t

)
, t
)
, t
)
r
(
G(−1)

(
G
(
X
∗,G(−1)(x,0)
t , t

)
, t
)
, t
)

=
λ

σ
Gx

(
X
∗,G(−1)(x,0)
t , t

)
r
(
X
∗,G(−1)(x,0)
t , t

)

= Gx

(
X
∗,G(−1)(x,0)
t , t

)
π
∗,G(−1)(x,0)
t .
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Example 3. Let U be given by the CRRA utility (25). Then, the optimal wealth
process corresponding to arbitrary utility Û is given by

X̂∗,xt = G
(
G(−1)(x, 0)e

λ2

γ (1− 1
2γ )t+λ

γWt , t
)
,

with G : R+× [0, T )→ R+ solving Gt (x, t)+ 1
2

(
λ
γ

)2
x2Gxx (x, t) = 0 and G (x, T ) =

Î (x−γ) . Moreover, the associated optimal portfolio process is given by

π̂∗,xt = Gx

(
G(−1)(x, 0)e

λ2

γ (1− 1
2γ )t+λ

γWt , t
)
π∗,G

(−1)(x,0),

with corresponding optimal feedback portfolio function

π̂∗(x, t) =
λ

σγ
Gx

(
G(−1)(x, t), t

)
G(−1)(x, t).

4 Probabilistic properties
We examine various probabilistic properties of the optimal wealth process. We
provide novel decompositions of the cumulative distribution and density functions
of the optimal wealth at a fixed time, derive universal upper and lower bounds for
them, and study in detail the probability of falling below the investor’s initial wealth.
Finally, we use these representations to express the expectation of a functional of
the optimal wealth at a fixed time in terms of a convolution.

4.1 The cumulative distribution and density functions
We provide the cumulative distribution and density functions of the optimal wealth
process. These functions are represented in terms of two integrals, one temporal
and one spatial, of functionals related to the investor’s local risk aversion and the
marginal local absolute risk tolerance. These representations are particularly useful
because they enable us to construct explicit universal bounds (see Corollary 4.4).

Proposition 4.1. Let λ be as in (2) and let r(x, t) and γ(x, t) be, respectively, the
local absolute risk tolerance and risk aversion functions (cf. (12)). The following
assertions hold.

i) Let Φ be the cumulative distribution function of the standard normal distri-
bution. Then, for t ∈ (0, T ], x, y > 0 and X∗,x0 = x, the cumulative distribution
function of the optimal wealth at time t is given by

P
(
X∗,xt ≤ y

)
= Φ

(
1

λ
√
t

∫ y

x

γ (z, t) dz +
λ

2
√
t

∫ t

0

rx (x, s) ds− λ
√
t

)
. (38)

ii) Let φ be the density function of the standard normal distribution. Then, for
t ∈ (0, T ], x, y > 0 and X∗,x0 = x, the density function of the optimal wealth at time
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t is given by

f(y, t;x, 0) =
1

λ
√
t
γ (y, t)φ

(
1

λ
√
t

∫ y

x

γ (z, t) dz +
λ

2
√
t

∫ t

0

rx(x, s)ds− λ
√
t

)
.

(39)

Proof. From (22) we have,

P
(
X∗,xt ≤ y

)
= P

(
Wt ≤

H(−1) (y, t)−H(−1) (x, 0)− λ2t
λ

)

= Φ

(
1

λ
√
t

(
H(−1) (y, t)−H(−1) (x, 0)

)
− λ
√
t

)
, (40)

and the result follows from (20) and (21). Assertion (39) follows easily from (38).

Corollary 4.2. The optimal terminal wealth X∗,xT satisfies

P
(
X∗,xT ≤ y

)
= Φ

(
1

λ
√
T

log
U ′ (x)

U ′ (y)
+

λ

2
√
T

∫ T

0

rx (x, s) ds− λ
√
T

)
.

Example 4. Let U be given by the CRRA utility (25). Using (26) and (17), we
easily deduce that r(x, t) = 1

γx and γ(x, t) = γ
x . Then, (38) yields

P(X∗,xt ≤ y) = Φ

(
γ

λ
√
t

log
(y
x

)
+ λ
√
t

(
1

2γ
− 1

))
.

The next result relates the sensitivities of the cumulative distribution function
with respect to the spatial variables x and y.

Proposition 4.3. For fixed (y, t) , the cumulative distribution function
P
(
X∗,xt ≤ y

)
is decreasing with respect to the initial wealth x while, for fixed (x, t) ,

P
(
X∗,xt ≤ y

)
is increasing with respect to the target level y. In particular,

r (x, 0)
∂P
(
X∗,xt ≤ y

)

∂x
= −r (y, t)

∂P
(
X∗,xt ≤ y

)

∂y
, (41)

where r (x, t) is the local absolute risk tolerance function (cf. (12)).

Proof. The monotonicity assertions follow trivially. Next, let

A (y, t, x, 0) =
1

λ
√
t

(
H(−1) (y, t)−H(−1) (x, 0)

)
− λ
√
t.

Then, from (40), we deduce that

∂P
(
X∗,xt ≤ y

)

∂y
=

∂
∂yA (y, t, x, 0)
∂
∂xA (y, t, x, 0)

∂P
(
X∗,xt ≤ y

)

∂x
.
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In turn, using (19) and (12) yields

∂

∂y
A (y, t, x, 0) =

1

λ
√
t
H(−1)
x (y, t) =

1

λ
√
t

1

r (y, t)

and, similarly,

∂

∂x
A (y, t, x, 0) = − 1

λ
√
t
H(−1)
x (x, 0) = − 1

λ
√
t

1

r (x, 0)
,

and (41) follows.

Next, we show how (38) can be used to derive universal upper and lower bounds
that depend exclusively on the slope of the risk tolerance coefficient RT (x) (cf. (11)).
Observe that while (42) holds at terminal time T, the inequalities (43) and (44) hold
for all t ∈ (0, T ] .

Corollary 4.4. Assume that the absolute risk tolerance coefficient RT (x) satisfies,
for x ≥ 0,

0 < m ≤ RT ′ (x) ≤ n. (42)

Then, for x, y > 0 and t ∈ (0, T ] , the following inequalities hold

P
(
X∗,xt ≤ y

)
≤ Φ

(
1

m

1

λ
√
t

log
(y
x

)
+ λ
√
t
(n

2
− 1
))

(43)

and
P
(
X∗,xt ≤ y

)
≥ Φ

(
1

n

1

λ
√
t

log
(y
x

)
+ λ
√
t
(m

2
− 1
))

. (44)

Proof. In Källblad and Zariphopoulou (2014) (see Proposition 16) it was shown that
if (42) holds, then this property is inherited by the local absolute risk tolerance
function for all t ∈ (0, T ] ,

0 < m ≤ rx (x, t) ≤ n. (45)

Using the above inequality and (38) we conclude.

4.2 The probability of falling below initial wealth
Next, we consider the probability that the optimal wealth drops, at time t ∈ (0, T ] ,
below the initial wealth. The following result follows directly from (38) and Corollary
4.4.

Proposition 4.5. i) For t ∈ (0, T ] , x > 0, we have

P
(
X∗,xt ≤ x

)
= Φ

(
λ

2
√
t

∫ t

0

rx (x, s) ds− λ
√
t

)
. (46)

ii) If the absolute risk tolerance coefficient satisfies 0 < m ≤ RT ′ (x) ≤ n, then, for
t ∈ (0, T ] , x > 0,

Φ
(
λ
√
t
(m

2
− 1
))
≤ P

(
X∗,xt ≤ x

)
≤ Φ

(
λ
√
t
(n

2
− 1
))

. (47)
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In particular,

P
(
X∗,xt ≤ x

)
≤ 1

2
for n = 2

and
P
(
X∗,xt ≤ x

)
≥ 1

2
for m = 2.

Next, we look at (46) as a function of x and t. As the following proposition
shows, it is exclusively the convexity or concavity of the risk tolerance coefficient (cf.
(11)) that determines the monotonicity of P(X∗,xt ≤ x) with respect to the wealth
argument.

The time monotonicity is more involved and we do not have, in general, similar
results. However, if the slope of the risk tolerance coefficient is bounded from above
and below then, for a certain range of these bounds, we can determine whether
P(X∗,xt ≤ x) increases or decreases with time.

Proposition 4.6. i) We have

∂

∂x
P
(
X∗,xt ≤ x

)
=

(
λ

2
√
t

∫ t

0

rxx (x, s) ds

)
φ

(
λ

2
√
t

∫ t

0

rx (x, s) ds− λ
√
t

)
. (48)

If the absolute risk tolerance coefficient RT (x) is a concave (convex) function of
wealth, then, for t ∈ (0, T ), P

(
X∗,xt ≤ x

)
is decreasing (increasing) in x.

ii) Moreover,
∂

∂t
P
(
X∗,xt ≤ x

)

=
λ

2
√
t

(
rx (x, t)− 1

2t

∫ t

0

rx (x, s) ds− 1

)
φ

(
λ

2
√
t

∫ t

0

rx (x, s) ds− λ
√
t

)
. (49)

If the absolute risk tolerance coefficient RT (x) satisfies 0 < m ≤ RT ′ (x) ≤ n (cf.
(42)), then, if m < n < m

2 + 1, the cumulative probability P
(
X∗,xt ≤ x

)
is decreasing

in time, while if m < n
2 + 1 < n, it is increasing in time.

Proof. i) In Källblad and Zariphopoulou (2014) (see Proposition 12) it was shown
that if RT (x) is a concave (convex) function of wealth, then r (x, t) is also concave
(convex), for each t ∈ (0, T ) . Using this result, we easily conclude.

ii) Using that the bounds of RT ′ (x) yield the same bounds for rx (x, t) , t ∈ (0, T ) ,
(cf.(45)), we easily deduce that for (x, t) ∈ R+ × (0, T ) ,

m− n

2
− 1 ≤ rx (x, t)− 1

2t

∫ t

0

rx (x, s) ds− 1 ≤ n− m

2
− 1,

and the rest of the proof follows easily.
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4.3 Expectation of functionals of the optimal wealth
We next compute the expectation of a functional of the optimal wealth process at a
fixed time, which we then use to derive expressions for its mean and variance.

Proposition 4.7. Let λ be as in (2), H the solution to (15) and (16), and a
function g : R+ → R of polynomial growth. Let G : R× (0, T ]→ R be given by

G(x, t) = g(H(x, t)). (50)

Then, for t ∈ (0, T ], the expectation E(g(X∗,xt )) is given by the convolution

E(g(X∗,xt )) = (G(·, t) ∗ ξ(·, t)) (z)

∣∣∣∣
z=H(−1)(x,0)+λ2t

(51)

where ξ (x, t) is the fundamental solution

ξ(x, t) =
1√

2λ2πt
e−

x2

2λ2t . (52)

Proof. Recalling the density function in (39), we obtain

E(g(X∗,xt )) =

∫ ∞

0

g (y) f (y, t;x, 0) dy

=

∫ ∞

0

g (y)
1

λ
√
t
φ

(
H(−1) (y, t)−H(−1) (x, 0)− λ2t

λ
√
t

)
dy

r (y, t)
.

Changing variables to η = H(−1) (y, t) , we have dη = H
(−1)
x (y, t) dy = dy

r(y,t) .

Moreover, using that for each t ∈ (0, T ] the function H (x, t) is of full range (see
Proposition 3.1 herein), we easily deduce that

E(g(X∗,xt )) =
1

λ
√
t

∫ ∞

−∞
g (H (η, t))φ

(
1

λ
√
t

(
η − (H(−1) (x, 0) + λ2t)

))
dη.

Using the above result for specific choices of g(x), namely, g(x) = x and g(x) = x2,
we obtain the following expressions for the mean and variance of the optimal wealth
process at a fixed time. A similar expression for the mean was first obtained in
Musiela and Zariphopoulou (2010).

Corollary 4.8. The mean and variance of the optimal wealth process X∗,xt at a
fixed time t ∈ (0, T ] are given by

E(X∗,xt ) = H
(
H(−1)(x, 0) + λ2t, 0

)
, (53)

and
Var(X∗,xt ) = v

(
H(−1)(x, 0) + λ2t, t

)
, (54)
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where the function v : R× (0, T ]→ R+ is given by

v(x, t) = (H2(·, t) ∗ ξ(·, t))(x)−H2(x, 0), (55)

and ξ(x, t) is as in (52) .

Example 5. Let U be given by the CRRA utility (25). Using (26) and (53), we
have

E
(
X∗,xt

)
= x exp

(
λ2

γ
t

)
.

Moreover, it is readily computed that

(
H2(·, t) ∗ ξ(·, t)

)
(x) = exp

(
2

γ
x+

2λ2t

γ2
+
λ2

γ2
(T − t)

)
.

Then, (54) yields

Var(X∗,xt ) = x2 exp

(
2λ2t

γ

)(
exp

(
λ2t

γ2

)
− 1

)
.

5 Quantile, VaR and expected shortfall
Over the past twenty years there has been a shift in measuring financial risk away
from the standard deviation of returns and toward alternative measures such as value
at risk (VaR) and expected shortfall (ES). In contrast to the standard deviation of
returns, which describes both the upside and downside dispersion of the distribution
of returns, VaR focuses solely on the potential downside (see, among others, Campbell
et al. (2001)). VaR is widely used in the risk management operations of financial
institutions as a summary or benchmark measure of the firm’s exposure to market
risk. We refer the reader to Jorion (1997) and Duffie and Pan (1997), among others,
for a comprehensive overview of the use of VaR for financial risk management.

While VaR is used extensively in the financial industry, risk management prin-
ciples that involve VaR are not so often used in individual portfolio management.
Herein, we take a preliminary step in this direction and examine the VaR of the
optimal wealth process. We provide a general expression for the investor’s VaR at a
fixed time in terms of the associated harmonic function H(x, t).

We begin with the definition of VaR.

Definition 1. The value at risk (VaR) of the investor’s optimal wealth at time
t0 ∈ (0, T ] and with confidence level α ∈ (0, 1), denoted by VaRα = VaRα(X∗,xt0 ), is
the minimum (nonnegative) amount such that the probability of experiencing a loss
in wealth at time t0 greater than VaRα is at most α. That is,

VaRα(X∗,xt0 ) = inf
{
y ≥ 0: P

(
x−X∗,xt0 ≥ y

)
≤ α

}
. (56)

It is evident from (56) that VaR is related to the quantile function of X∗,xt0 . Next,
we compute the quantile function of the optimal wealth process at a fixed time. The
following follows directly from (40) (see, also, Musiela and Zariphopoulou (2010)).

15



Proposition 5.1. Let the optimal wealth process, X∗,xt , t ∈ 0, T ], be given by (22).
Then, at time t0 ∈ [0, T ], its quantile function, F (−1)(y, t0), is given by

F (−1)(y, t0) = H
(
H(−1)(x, 0) + λ2t0 + λ

√
t0Φ(−1)(y), t0

)
, (57)

where Φ(−1) is the quantile function of the standard normal distribution.

The probability that the investor experiences a loss in his optimal wealth at
t0 is equal to the probability that his optimal wealth at t0 falls below his initial
wealth. This probability was studied in section 4.2 (see (46)). Observe that, for any
confidence level α that is greater than or equal to this probability, the investor’s VaR
at this confidence level is equal to zero. Therefore, the interval for the confidence
level α in the definition of VaR can be decomposed into a disjoint union of intervals,
(0, α∗) and [α∗, 1), for some maximal effective confidence level α∗, wherein VaR is
positive on the former interval and zero on the latter interval. By (46), we have that

α∗ = Φ

(
λ

2
√
t0

∫ t0

0

rx(x, s)ds− λ
√
t0

)
, (58)

where r is the investor’s local absolute risk tolerance function.
We are now ready to compute the VaR of the investor’s optimal wealth at a fixed

time.

Proposition 5.2. Let the optimal wealth process, X∗,xt , t ∈ [0, T ], be given by
(22). Then, the investor’s value at risk, VaRα(X∗,xt0 ), at time t0 ∈ (0, T ] and with
confidence level α ∈ (0, α∗), where α∗ is as in (58), is given by

VaRα(X∗,xt0 ) = x−H
(
H(−1)(x, 0) + λ2t0 + λ

√
t0Φ(−1)(α), t0

)
, (59)

where Φ(−1) is the quantile function of the standard normal distribution.

Proof. Under the above assumptions, we have

α = P
(
X∗,xt0 − x < −VaRα

)
= F (x−VaRα, t0) ,

where F (y, t0) is the distribution function of X∗,xt0 . The result then follows from
(57).

5.1 Inferring risk aversion from VaR targets
We provide an example in which we infer the risk preferences of an investor who
is an expected utility maximizer in [0, T ] but also places a VaR target at a specific
time t0 ∈ (0, T ]. Under CRRA utility (cf. (25)) this is equivalent to inferring the
coefficient of relative risk aversion γ.

Extracting risk preferences from investment targets has been analyzed in Musiela
and Zariphopoulou (2010) and, more recently, in Monin (2014). These papers used
the investor’s desired distributional data to infer his risk preferences. Specifically, in
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the former paper the authors used the targeted mean to extract the investor’s risk
tolerance coefficient, while in the latter paper the investor’s marginal utility was
recovered from a targeted wealth distribution.

Similarly, we show herein that fixing a VaR target for the investor’s optimal
wealth at a single fixed time within the investment horizon is sufficient to uniquely
determine the investor’s risk aversion if the investor has CRRA utility.

Proposition 5.3. Let the investor have CRRA utility (25) and suppose the investor
targets the VaR for his optimal wealth at time t0 ∈ (0, T ] and with confidence level
α ∈

(
0,Φ(−λ

√
t0)
)
to be

VaRα(X∗,xt0 ) = px, (60)

for some proportion p ∈ (0, 1) of his initial wealth x. Then, the investor’s coefficient
of relative risk aversion is uniquely given by

γ =
λ
√
t0Φ(−1)(α) + λ2t0 −

√
(λ
√
t0Φ(−1)(α) + λ2t0)2 − 2λ2t0 log(1− p)

2 log(1− p)
, (61)

where Φ(−1) is the quantile function of the standard normal distribution.

Proof. First, observe that (61) is well-defined since log(1− p) < 0 for all p ∈ (0, 1).
Next, for arbitrary γ > 0, (58) yields that

α∗ = α∗(γ) = Φ

(
λ
√
t0

2γ
− λ
√
t0

)
,

which is greater than Φ(−λ
√
t0) for all γ > 0. Then, using (59) and (26) yields

VaRα(X∗,xt0 ) = x− x exp

(
λ

γ

√
t0Φ(−1) (α) +

λ2

γ

(
1− 1

2γ

)
t0

)
.

From (60) the above becomes

λ

γ

√
t0Φ(−1) (α) +

λ2

γ

(
1− 1

2γ

)
t0 = log (1− p) ,

and, in turn,

γ2 log(1− p)− γ
(
λ
√
t0Φ(−1)(α) + λ2t0

)
+

1

2
λ2t0 = 0.

Solving this quadratic we deduce that its positive root must be given by (61).

In Fig. 1 we use (61) to show the implied risk aversion coefficient for an investor
who sets a VaR target for his terminal wealth. We do this for various realistic
confidence levels α. For each fixed α, it is seen that the lower the investor is willing
to risk, in the sense of VaR, the higher is his risk aversion.
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Figure 1: Risk aversion implied by terminal wealth VaR targeting for an investor
with CRRA utility. Parameters: λ = 0.15, T = 40.

5.2 Expected shortfall and implied risk preferences
Despite its popularity, VaR has well-known deficiencies as a measure of financial risk.
For example, VaR does not provide the investor with an estimate of his expected
losses in the event that the VaR level is exceeded. The actual losses when the VaR
level is exceeded will be greater than or equal to the VaR level itself. Indeed, losses
could be much greater than the VaR level, depending on the shape of the tail of
the returns distribution. Another deficiency of VaR is that it generally does not
reward diversification, since it is possible for the VaR of a sum of two portfolios
to be greater than the sum of the VaRs of the individual portfolios (see Artzner
et al. (1997, 1999)). There exist many alternative risk measures to VaR and, among
these, a popular one that addresses the above deficiencies is the so-called expected
shortfall (ES). ES takes into account the tail of the distribution of losses beyond the
VaR level and, unlike VaR, it is a so-called coherent risk measure (see, for example,
Acerbi and Tasche (2002)), which implies that it rewards diversification.

Herein, we calculate the ES at a given horizon and confidence level for an investor
with CRRA utility. We then discuss the inference of risk preferences for an investor
who targets the ES for his optimal wealth at a given time. We begin with the
following definition, which can be found in Hult et al. (2012), among others.

Definition 2. The expected shortfall (ES) of the investor’s optimal wealth at time
t0 ∈ (0, T ] and with confidence level α ∈ (0, 1), denoted by ESα(X∗,xt0 ), is the
expected loss to the investor’s wealth conditional on the loss being greater than or
equal to VaRα(X∗,xt0 ). That is,

ESα(X∗,xt0 ) = −E
(
X∗,xt0 − x

∣∣ X∗,xt0 − x ≤ −VaRα(X∗,xt0 )
)
. (62)
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We only consider ESα for α ∈ (0, α∗), where α∗ is given in (58). To see why,
recall that VaRα = 0 for all α ∈ [α∗, 1), which, by (62), implies that

ESα(X∗,xt0 ) = ESα∗(X
∗,x
t0 ) = −E

(
X∗,xt0 − x

)
, α ∈ [α∗, 1).

That is, for all α ∈ [α∗, 1), ESα is just the (unconditional) expected loss on the
optimal wealth.

Given that the optimal wealth X∗,xt0 in our model has continuous distribution
function (cf. (38)), the expected shortfall at time t0 ∈ (0, T ] and with confidence
level α ∈ (0, α∗) can be written (see, for example, Hult et al. (2012, Proposition
6.5)) as

ESα(X∗,xt0 ) =
1

α

∫ α

0

VaRz(X
∗,x
t0 )dz. (63)

The expression (63) is suggestive of the alternative names by which ES is known.
These include average VaR (aVaR) and tail conditional expectation (TCE).

Combining the above and Proposition 5.2, we deduce the following.

Proposition 5.4. Let the optimal wealth process, X∗,xt , t ∈ [0, T ], be given by (22).
Then, the investor’s expected shortfall, ESα(X∗,xt0 ), at time t0 ∈ (0, T ] and with
confidence level α ∈ (0, α∗), where α∗ is as in (58), is given by

ESα(X∗,xt0 ) = x− 1

α

∫ α

0

H
(
H(−1)(x, 0) + λ2t+ λ

√
tΦ(−1)(z), t

)
dz, (64)

where Φ(−1) is the quantile function of the standard normal distribution.

We are now ready to calculate the expected shortfall at a given horizon and
confidence level for a CRRA investor. We also show that, under a mild additional
assumption, the expected shortfall is decreasing in the coefficient of relative risk
aversion γ.

Proposition 5.5. Let the investor have CRRA utility (25). The following assertions
hold.

i) The expected shortfall of the investor’s optimal wealth at time t0 ∈ (0, T ] and
with confidence level α ∈ (0, α∗), where α∗ is as in (58), is given by

ESα(X∗,xt0 ) = x

(
1− 1

α
exp

(
λ2

γ
t0

)
Φ(Φ(−1)(α)− λ

γ

√
t0)

)
. (65)

ii) If (λ, t0, α) are such that α < Φ(−λ
√
t0), then, for fixed (λ, t0, α), the expected

shortfall is a strictly decreasing function of the relative risk aversion coefficient γ.

Proof. i) First, observe that, if F (−1)(y, t0) is the quantile function of the optimal
wealth X∗,xt0 , it follows that

ESα(X∗,xt0 ) = x− E
(
X∗,xt0 | X

∗,x
t0 < F (−1)(α, t0)

)
,

where we have used that VaRα(X∗,xt0 ) = x− F (−1)(α, t0).
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Next, we recall that if a random variable, say Y , satisfies log(Y ) ∼ N(µ, σ2),
then, for α ∈ (0, 1),

E
(
Y |Y < F

(−1)
Y (α)

)
=

1

α
eµ+

1
2σ

2

Φ(Φ(−1)(α)− σ),

where F (−1)
Y is the quantile function of Y (see, for example, Dhaene et al. (2006,

equation (25))).
For CRRA utility, we have (cf. (27)) that

log(X∗,xt0 ) ∼ N
(

log(x) +
λ2

γ

(
1− 1

2γ

)
t0,

λ2

γ2
t0

)
,

and we easily conclude.
ii) We first recall that for the standard normal distribution function Φ and its

density function φ, we have that

1− Φ(z) ≤ φ (z)

z
, z > 0 and Φ (z) ≤ −φ (z)

z
, z < 0.

If Φ(−1)(α) < −λ
√
t0, then, for z = Φ(−1)(α)− λ

γ

√
t0 < 0,

∂ESα
∂γ

= −x
α

∂

∂γ

(
exp

(
λ2

γ
t0

)
Φ(Φ(−1)(α)− λ

γ

√
t0)

)

=
xλ

αγ2
√
t0 exp

(
λ2

γ
t0

)(
λ
√
t0Φ (z)− φ (z)

)

≤ xλ

αγ2
√
t0 exp

(
λ2

γ
t0

)(
−λ
√
t0
φ (z)

z
− φ (z)

)

=
xλ

αγ2
√
t0 exp

(
λ2

γ
t0

)
φ (z)

(
λ
√
t0

λ
γ

√
t0 − Φ(−1) (α)

− 1

)

<
xλ

αγ2
√
t0 exp

(
λ2

γ
t0

)
φ (z)

(
− λ

√
t0

Φ(−1) (α)
− 1

)
< 0.

In Fig. 2 we use (65) to depict the investor’s expected shortfall over [0, T ] as a
function of the coefficient of relative risk aversion γ for various levels of confidence
α. Figure 3 shows the inverse dependence, i.e. the investor’s relative risk aversion
as a function of his desired expected shortfall. This can be done since the parameter
values for (λ, T, α) in the numerical computation satisfy α < Φ(−λ

√
T ) which, by

Proposition 5.5(ii), is a sufficient condition under which the implied coefficient of
relative risk aversion γ can be found by numerically inverting (61). Similarly to Fig.
1, we see that, for each fixed confidence level α, a lower desired expected shortfall
implies a higher inferred risk aversion coefficient γ.
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Figure 2: Expected shortfall for an investor with CRRA utility as a function of risk
aversion. Parameters: λ = 0.15, T = 40.
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Figure 3: Risk aversion for an investor with CRRA utility as a function of expected
shortfall. Parameters: λ = 0.15, T = 40.
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6 Portfolio greeks for utility-based investment
Sensitivity analysis is the process of evaluating incremental impacts on value of
changes in underlying individual variables on which the value depends. The most
common application of sensitivity analysis in mathematical finance is the use of
so-called option greeks, e.g. “delta” and “gamma,” for hedging derivative exposures.
Herein, we introduce portfolio greeks, drawing an analogy to the well-known option
greeks. Portfolio greeks for utility-based investment are then naturally defined as the
sensitivities of the investor’s optimal wealth with respect to the various underlying
parameters on which it depends. To the best of our knowledge, these sensitivities
have not been considered before in the literature.

Both option greeks and portfolio greeks find applications in risk management.
In the case of options, the greeks are typically used to hedge risk in derivative
exposures. Institutions transact in derivatives for the fees they collect, and they
will often try to hedge the risk in the exposure rather than retain it. While risk
reduction is the typical application of option greeks, this is not necessarily the case
in optimal investment, which is based on exploiting risk in accordance with the
investor’s preferences. Nonetheless, risk management for individual investors is
an essential, though perhaps overlooked, part of the investment process. Portfolio
greeks can be used to estimate the sensitivities of the investor’s wealth to underlying
market parameters and then to manage risk through sensitivity analysis and stress
testing.

In contrast to the options greeks delta and gamma, in which the price level of
the stock is the relevant state variable, the appropriate state variable for portfolio
greeks seems to be the return on the stock. To see this, consider that for a standard
European call or put option, it is sufficient to know the stock price level to determine
the current value of the option. To determine an investor’s wealth in investment
management, however, the stock price level is insufficient. Instead, one must know
not only the current stock price level but also all of the stock price levels at which
the investor transacted in the stock in the past. In optimal investment, therefore,
one must know the cumulative return on the stock over the investment period to
determine the investor’s wealth at a given time. Moreover, given that we work herein
with discounted wealth (in which the riskless asset is the numéraire), the relevant
state variable in our model is the cumulative excess return of the stock over that of
the riskless asset.

We are now ready to define portfolio greeks for utility-based investment. Let the
stock price St, t ∈ [0, T ], be as in (1). Define the stock’s cumulative (continuously
compounded) excess return process, Rt, t ∈ [0, T ], as

Rt = log

(
St
S0

)
− rt, (66)

and the mean excess return of the stock as µ̂ = µ− r. Then, (1) yields

dRt = (µ̂− 1

2
σ2)dt+ σdWt, (67)
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with R0 = 1. The optimal wealth process X∗,xt can be written as a harmonic function
of the process Rt, namely,

X∗,xt = C (Rt, t;x) (68)

with C : R× [0, T ]× R+ → R+ given by

C (R, t;x) = H

(
H(−1)(x, 0) +

1

2
µ̂t+

λ

σ
R, t

)
. (69)

In particular,

C(R, T ;x) = I

(
exp

(
−(H(−1)(x, 0) +

1

2
µ̂T +

λ

σ
R)

))
, (70)

with I as in (5).
Because of representation (68), we will occasionally refer to C(R, t;x) as the

wealth function.
Recall that in the log-normal market model considered herein, the price at a time

before maturity of an option written on the stock is given by a deterministic function
of time and the stock price, where the function satisfies the Black-Scholes-Merton
partial differential equation with terminal condition given in terms of the option
payoff. Analogously, (68) and (69) show that the investor’s optimal wealth at a
time within the investment horizon is given by a deterministic function of time and
the stock’s cumulative excess return, where the function now satisfies a terminal
condition (see (70)) given in terms of the investor’s risk preferences.

Next, we introduce two auxiliary functions ∆,Γ: R× [0, T ]× R+ → R+ given by

∆ (R, t;x) = Hx

(
H(−1)(x, 0) +

1

2
µ̂t+

λ

σ
R, t

)
(71)

and
Γ (R, t;x) = Hxx

(
H(−1)(x, 0) +

1

2
µ̂t+

λ

σ
R, t

)
, (72)

and calculate the sensitivities of the wealth function C (R, t;x) in terms of variable
R.

Lemma 6.1. i) The sensitivity of C(R, t;x) with respect to R is given by

∂C (R, t;x)

∂R
=
λ

σ
∆ (R, t;x) , (73)

while its convexity by

∂2C (R, t;x)

∂R2
=

(
λ

σ

)2

Γ (R, t;x) . (74)

More generally,

∂nC (R, t;x)

∂Rn
=

(
λ

σ

)n
∂n

∂xn
H

(
H(−1)(x, 0) +

1

2
µ̂t+

λ

σ
R, t

)
. (75)
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ii) For n = 1, ..., , and I (x) as in (5), if ∂n

∂xn I (e−x) ≷ 0, then, for (R, t;x) ∈
R× [0, T )× R+,

∂nC (R, t;x)

∂Rn
≷ 0. (76)

Proof. Part i) follows by direct differentiation.
For part ii) we recall that all partials ∂n

∂xnH (x, t), n = 1, ..., solve the heat
equation (15) with terminal condition ∂n

∂xnH (x, T ) = ∂n

∂xn I (e−x) . Using (6) we
deduce that the appropriate conditions for the application of the comparison principle
hold, and we easily conclude.

In the options literature, the sensitivities of an option’s value with respect to the
parameters of the underlying model are widely studied, usually in a hedging context.
An option’s delta, for example, represents the incremental change in the value of the
option with respect to the incremental change in the stock price, while an option’s
gamma represents the incremental change in the option’s delta with respect to an
incremental change in the stock price. These sensitivities, denoted by ∂Vt

∂St
and ∂2Vt

∂S2
t
,

respectively, where Vt is the value of the option, are formally defined constructions
that are found by differentiating a deterministic pricing function that gives the
option’s price in terms of the model’s parameters and then evaluating the result at
the stock’s price. Herein, we take a similar approach to computing sensitivities of
the optimal wealth process. Namely, we compute first- and second-order sensitivities
of the optimal wealth with respect to the stock’s cumulative excess return, which we
formally denote by ∂X∗,xt

∂Rt
and ∂2X∗,xt

∂R2
t

.
We start with the following lemma.

Lemma 6.2. Let Rt, t ∈ [0, T ], be as in (66). Then,

∆ (Rt, t;x) = r
(
X∗,xt , t

)
(77)

and
Γ (Rt, t;x) = r

(
X∗,xt , t

)
rx
(
X∗,xt , t

)
, (78)

where r is the local absolute risk tolerance function (cf.(12)) and X∗,xt , t ∈ [0, T ], the
optimal wealth process.

Proof. Equality (77) follows from (23). To show (78), we first observe that (17)
yields

Hxx

(
H(−1)(x, t), t

)
=
Hxx

(
H(−1)(x, t), t

)

Hx(H(−1)(x, t), t)
Hx(H(−1)(x, t), t) (79)

= rx (x, t) r (x, t) ,

and we easily conclude.

Proposition 6.3. Let X∗,xt and π∗,xt be the investor’s optimal wealth and portfolio
processes given, respectively, by (22) and (23), and r (x, t) be the local absolute risk
tolerance function. The following assertions hold.
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i) The sensitivity of X∗,xt with respect to Rt is given by

∂X∗,xt
∂Rt

:=
∂C (R, t;x)

∂R

∣∣∣∣
R=Rt

= π∗,xt . (80)

ii) The convexity of X∗,xt with respect to Rt is given by

∂2X∗,xt
∂R2

t

:=
∂2C (R, t;x)

∂R2

∣∣∣∣
R=Rt

=
λ

σ
rx
(
X∗,xt , t

)
π∗,xt (81)

=

(
λ

σ

)2
(

1

2

∂

∂x
r2(x, t)

∣∣∣∣
x=X∗,xt

)
. (82)

iii) The change in the investor’s wealth associated to a change in the continuously
excess return on the stock can be approximated by

∆X∗,xt ≈ λ

σ
r(X∗,xt , t)∆Rt +

1

2

(
λ

σ

)2
(

1

2

∂

∂x
r2(x, t)

∣∣∣∣
x=X∗,xt

)
(∆Rt)

2. (83)

In Fig. 4 we depict the wealth function C as a function of R for an investor with
CRRA utility (25). That is, the function H used to calculate (69) is given by (26).
The figure illustrates how the slope and convexity effects of the cumulative excess
return on the wealth function depend on the risk preferences of the investor. We
observe that, the more risk averse an investor is, the less are the slope and convexity
effects on his wealth function.
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Figure 4: The wealth function C(R, t;x) for an investor with CRRA utility as a
function of the cumulative excess return on the stock, for various levels of risk
aversion γ. Parameters: µ̂ = 0.08, σ = 0.20, λ = 0.40, T = 40, x = 1.

We continue with the sensitivities of the wealth function C(R, t;x) with respect
to time t and the market parameters σ and µ̂.
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Lemma 6.4. We have

∂C (R, t;x)

∂t
=

1

2
µ̂∆ (R, t;x)− 1

2
λ2Γ (R, t;x) . (84)

Moreover,
∂C (R, t;x)

∂σ

=

(
−2λ

σ2
R+

λ2T

σ
rx (x, 0)

)
∆ (R, t;x)− λ2(T − t)

σ
Γ (R, t;x) (85)

and
∂C (R, t;x)

∂µ̂

=

(
1

2
t− λT

σ
rx(x, 0) +

1

σ2
R

)
∆ (R, t;x) +

λ(T − t)
σ

Γ (R, t;x) . (86)

Proof. Assertion (84) follows easily from (15). To show (85), we have

∂C (R, t;x)

∂σ
= Hσ

(
H(−1)(x, 0;σ) +

1

2
µ̂t+

λ

σ
R, t;σ

)

+∆ (R, t;x, σ)
∂

∂σ

(
H(−1)(x, 0;σ) +

1

2
µ̂t+

λ

σ
R

)
.

Recall (cf. (15)) that Ht + 1
2

(
µ̂
σ

)2
Hxx = 0. Define h : R+ → R+ as

h(z) =
1√

2πµ̂2z

∫ ∞

−∞
I(e−y) exp

(
− (x− y)2

2µ̂2z

)
dy,

and observe that H(x, t;σ) = h
(
T−t
σ2

)
. Then,

∂H(x, t;σ)

∂t
= − 1

σ2
h′
(
T − t
σ2

)
,

∂H(x, t;σ)

∂σ
= −2

(T − t)
σ3

h′
(
T − t
σ2

)
,

from which we deduce that

∂H(x, t;σ)

∂σ
=

2(T − t)
σ

∂H(x, t;σ)

∂t
= −λ

2(T − t)
σ

∂2H(x, t;σ)

∂x2
.

Next, from H
(
H(−1)(x, t;σ), t;σ

)
= x, we have

H(−1)
σ (x, t;σ) = −Hσ(H(−1)(x, t;σ), t;σ)

Hx(H(−1)(x, t;σ), t;σ)

=
λ2(T − t)

σ

Hxx(H(−1)(x, t;σ), t;σ)

Hx(H(−1)(x, t;σ), t;σ)
=
λ2(T − t)

σ
rx(x, t;σ).
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Combining the above we easily obtain (85).
To show (86), we work similarly. To this end, let ĥ : R+ → R+ be given by

ĥ(z) =
1√

2πz/σ2

∫ ∞

−∞
I(e−y) exp

(
− (x− y)2

2z/σ2

)
dy,

and observe that H(x, t; µ̂) = ĥ(µ̂2(T − t)). Then,

∂H(x, t; µ̂)

∂t
= −µ̂2ĥ′(µ̂2(T − t)), ∂H(x, t; µ̂)

∂µ̂
= 2µ̂(T − t)ĥ′(µ̂2(T − t)),

from which we deduce that

∂H(x, t; µ̂)

∂µ̂
= −2(T − t)

µ̂

∂H(x, t; µ̂)

∂t
=
λ2(T − t)

µ̂

∂2H(x, t; µ̂)

∂x2
.

We easily deduce that

H
(−1)
µ̂ (x, t; µ̂) = −λ

2(T − t)
µ̂

rx(x, t; µ̂).

Therefore
∂C (R, t;x)

∂µ̂
= Hµ̂

(
H(−1)(x, 0; µ̂) +

1

2
µ̂t+

µ̂

σ2
R, t; µ̂

)

+∆ (R, t;x)
∂

∂µ̂

(
H(−1)(x, 0; µ̂) +

1

2
µ̂t+

µ̂

σ2
R

)
.

= ∆ (R, t;x)

(
1

2
t− λ2T

µ̂
rx(x, 0) +

1

σ2
R

)
+
λ2(T − t)

µ̂
Γ (R, t;x) .

Using the above and Lemma 6.2 we readily obtain the sensitivities of X∗,xt with
respect to t, σ and µ̂.

Proposition 6.5. Let X∗,xt and π∗,xt be the investor’s optimal wealth and portfolio
processes given, respectively, by (22) and (23), and r (x, t) be the local absolute risk
tolerance function. The following assertions hold.

i) The sensitivity of X∗,xt with respect to t is given by

∂X∗,xt
∂t

:=
∂C (R, t;x)

∂t

∣∣∣∣
R=Rt

=
1

2
µ̂r(X∗,xt , t)− 1

2
λ2

(
1

2

∂

∂x
r2(x, t)

∣∣∣∣
x=X∗,xt

)

=

(
1

2
σ2 − 1

2
µ̂rx(X∗,xt , t)

)
π∗,xt . (87)
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ii) The sensitivity of X∗,xt with respect to σ is given by

∂X∗,xt
∂σ

:=
∂C (R, t;x)

∂σ

∣∣∣∣
R=Rt

=

(
λ2T

σ
rx(x, 0)− λ2(T − t)

σ
rx(X∗,xt , t)− 2λ

σ2
Rt

)
r(X∗,xt , t)

=

(
λTrx(x, 0)− λ(T − t)rx(X∗,xt , t)− 2

σ
Rt

)
π∗,xt . (88)

iii) The sensitivity of X∗,xt with respect to µ̂ is given by

∂X∗,xt
∂µ̂

:=
∂C (R, t;x)

∂µ̂

∣∣∣∣
R=Rt

=

(
t

2
− λT

σ
rx(x, 0) +

λ(T − t)
σ

rx(X∗,xt , t) +
1

σ2
Rt

)
r(X∗t , t)

=

(
(T − t)rx(X∗,xt , t)− Trx(x, 0) +

σ

2λ
t+

1

µ̂
Rt

)
π∗,xt . (89)

In Figs. 5, 6 and 7, we represent the sensitivities of the function C(R, t;x) with
respect to t, σ, and µ̂, respectively, for a CRRA investor with utility (25). The
function H in (69) is therefore given by (26).
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Figure 5: Sensitivity of the wealth function C(R, t;x) with respect to t for an investor
with CRRA utility. Parameters: µ̂ = 0.08, σ = 0.20, λ = 0.40, R = 1.8, t = 30, T =
40, x = 1.
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Figure 6: Sensitivity of the wealth function C(R, t;x) with respect to σ for an
investor with CRRA utility. Parameters: µ̂ = 0.08, σ = 0.20, λ = 0.40, R = 1.8, t =
30, T = 40, x = 1.
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Figure 7: Sensitivity of the wealth function C(R, t;x) with respect to µ̂ for for an
investor with CRRA utility. Parameters: µ̂ = 0.08, σ = 0.20, λ = 0.40, R = 1.8, t =
30, T = 40, x = 1.

29



Example 6. Let the investor have CRRA utility (25) as in Example 1. Recall that
π∗,xt = λ

σγX
∗,x
t . By using (17) and (26), it is easily seen that r(x, t) = 1

γx. Then
(80) and (81) yield that

∂X∗,xt
∂Rt

=
λ

σγ
X∗,xt , and

∂2X∗,xt
∂R2

t

=

(
λ

σγ

)2

X∗,xt .

Furthermore, (87), (88) and (89), respectively, yield that

∂X∗,xt
∂t

=
1

2

(
µ̂

γ
− λ2

γ2

)
X∗,xt ,

∂X∗,xt
∂σ

=

(
λ2

γ2σ
t− 2λ

γσ2
Rt

)
X∗,xt

and
∂X∗,xt
∂µ̂

=

((
1

2γ
− λ

γ2σ

)
t+

1

γσ2
Rt

)
X∗,xt .

We make the following observations. First, the investor’s optimal wealth is
increasing and convex in the stock’s cumulative excess return Rt. In addition, the
investor’s optimal wealth is increasing in time, i.e. ∂X∗,xt

∂t > 0, if and only if the
investor’s risk aversion coefficient satisfies γ > λ

σ .
To discuss monotonicity properties for the other sensitivities, it is convenient

to first define the process At, t ∈ (0, T ], as the average excess return on the stock,
given by At := 1

tRt. Then, standard but tedious calculations yield the following
results. The investor’s optimal wealth is increasing in µ̂, i.e. ∂X∗,xt

∂µ̂ > 0, if and only
if γ

(
At + 1

2σ
2
)
> µ̂. Finally, the investor’s optimal wealth is increasing in the stock

volatility, i.e. ∂X∗,xt
∂σ > 0, if and only if γAt < 1

2 µ̂.

6.1 Beta: That other greek
In Propositions 6.3 and 6.5 we calculated the sensitivities of the level of the optimal
wealth X∗,xt with respect to various quantities. Next, we focus on the sensitivities of
the cumulative excess return of the optimal wealth, rather than its level. We show
how these sensitivities relate to the beta of the investor’s portfolio.

Let X∗,xt , t ∈ [0, T ], be the investor’s wealth process. We define the optimal
wealth’s cumulative (continuously compounded) excess return process, denoted by
RXt , t ∈ [0, T ], as

RXt = log

(
X∗,xt
X∗,x0

)
= B(Rt, t;x), (90)

where Rt is as in (66) and B : R× [0, T ]× R+ → R is defined as

B(R, t;x) = logC(R, t;x)− log x, (91)

with C(R, t;x) is as in (69). We will occasionally call B(R, t;x) the wealth return
function.
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Next, we calculate the sensitivities of B(R, t;x) in terms of the variable R. The
following lemma follows by direct differentiation.

Lemma 6.6. Let the functions C, ∆, and Γ be given by (69), (71) and (72),
respectively. Then, the sensitivity of B(R, t;x) with respect to R is given by

∂B(R, t;x)

∂R
=
λ

σ

∆(R, t;x)

C(R, t;x)
, (92)

while its convexity is given by

∂2B(R, t;x)

∂R2
=

(
λ

σ

)2(
Γ(R, t;x)

C(R, t;x)
− ∆2(R, t;x)

C2(R, t;x)

)
. (93)

In Propositions 6.3 and 6.5 we showed that the sensitivities of the level of the
optimal wealth can be expressed in terms of the optimal portfolio process. We next
show that, when considering the sensitivities of the cumulative excess return on the
optimal wealth, it is appropriate instead to work with the optimal portfolio weight
process, that is, the optimal proportion of the investor’s wealth that is invested in
the stock.

Proposition 6.7. Let X∗,xt and π∗,xt be the investor’s optimal wealth and portfolio
processes given, respectively, by (22) and (23), and r(x, t) be the local absolute risk
tolerance function. Define the optimal portfolio weight process, π̃∗,xt , as

π̃∗,xt =
π∗,xt
X∗,xt

. (94)

The following assertions hold.
i) The sensitivity of RXt with respect to Rt is given by

∂RXt
∂Rt

:=
∂B(R, t;x)

∂R

∣∣∣∣
R=Rt

= π̃∗,xt . (95)

ii) The convexity of RXt with respect to Rt is given by

∂2RXt
∂R2

t

:=
∂2B(R, t;x)

∂R2

∣∣∣∣
R=Rt

=

(
λ

σ
rx(X∗,xt , t)− π̃∗,xt

)
π̃∗,xt . (96)

iii) The change in the cumulative excess return on the investor’s optimal wealth
associated to a change in the cumulative excess return on the stock can be approxi-
mated by

∆RXt ≈
λ

σ

r(X∗,xt , t)

X∗,xt
∆Rt +

1

2

(
λ

σ

)2(
rx(X∗,xt , t)− r(X∗,xt , t)

X∗,xt

)
r(X∗,xt , t)

X∗,xt
(∆Rt)

2
.
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We now relate the above sensitivities to the portfolio’s beta, where beta is in
the sense of the Capital Asset Pricing Model (CAPM) (see Sharpe (1964); Lintner
(1965); Mossin (1966)). The CAPM describes the relationship that one should
expect between risk and return for individual assets and portfolios. Under many
simplifying assumptions, the theory asserts that the expected return on an asset
can be computed as the linear combination of the return on a risk-free asset and
the expected excess return on the market portfolio, which is the portfolio of all
marketable assets weighted in proportion to their relative market values. The
sensitivity of an asset’s expected excess return to the market’s expected excess
return is referred to as the asset’s beta, and is in practice estimated as a single-factor
model by regressing asset excess returns on those of a representative market index.
Calculating a portfolio’s beta then involves taking a weighted average of the betas
of the constituent stocks within the portfolio, where the weight for a given stock’s
beta is given by the proportion of the investor’s total wealth invested in that stock.
Ultimately, then, the portfolio’s beta describes the sensitivity of the excess return
on the portfolio with respect to the excess return on the market.

In our model, there is one stock that represents the market index. The investor’s
portfolio’s beta is therefore the optimal weight process, π̃∗,xt , which by the above,
describes the sensitivity of the excess return of the optimal wealth to the excess
return of the market. Notice that this is precisely what assertion (95) says.

We conclude by computing sensitivities of RXt with respect to the rest of the
market parameters. The sensitivities of the process RXt with respect to t, σ, and µ̂
have similar representations to those in Propositions 6.3 and 6.5. The difference is
that the optimal portfolio process π∗,xt is replaced with the optimal portfolio weight
process π̃∗,xt .

Proposition 6.8. Let X∗,xt and π∗,xt be the investor’s optimal wealth and portfolio
processes given, respectively, by (22) and (23), and r(x, t) be the local absolute risk
tolerance function. Let the optimal portfolio weight process, π̃∗,xt , be as in (94). The
following assertions hold.

i) The sensitivity of RXt with respect to t is given by

∂RXt
∂t

:=
∂B (R, t;x)

∂t

∣∣∣∣
R=Rt

=
1

2
µ̂
r(X∗,xt , t)

X∗,xt
− 1

2
λ2

1

X∗,xt

(
1

2

∂

∂x
r2(x, t)

∣∣∣∣
x=X∗,xt

)

=

(
1

2
σ2 − 1

2
µ̂rx(X∗,xt , t)

)
π̃∗,xt . (97)

ii) The sensitivity of RXt with respect to σ is given by

∂RXt
∂σ

:=
∂B (R, t;x)

∂σ

∣∣∣∣
R=Rt
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=

(
λ2T

σ
rx(x, 0)− λ2(T − t)

σ
rx(X∗,xt , t)− 2λ

σ2
Rt

)
r(X∗,xt , t)

X∗,xt

=

(
λTrx(x, 0)− λ(T − t)rx(X∗,xt , t)− 2

σ
Rt

)
π̃∗,xt . (98)

iii) The sensitivity of RXt with respect to µ̂ is given by

∂RXt
∂µ̂

:=
∂B (R, t;x)

∂µ̂

∣∣∣∣
R=Rt

=

(
t

2
− λT

σ
rx(x, 0) +

λ(T − t)
σ

rx(X∗,xt , t) +
1

σ2
Rt

)
r(X∗t , t)

X∗,xt

=

(
(T − t)rx(X∗,xt , t)− Trx(x, 0) +

σ

2λ
t+

1

µ̂
Rt

)
π̃∗,xt . (99)

Example 7. Let the investor have CRRA utility (25) as in Example 1. Recall that
π∗t = λ

σγX
∗
t , so that (94) yields that π̃∗,xt = λ

σγ . By (17) and (26), it is easily seen
that r(x, t) = 1

γx. Then (95) and (96) yield

∂RXt
∂Rt

=
λ

σγ
, and

∂2RXt
∂R2

t

= 0.

Furthermore, (97), (98) and (99), respectively, yield that

∂RXt
∂t

=
1

2

(
µ̂

γ
− λ2

γ2

)
,

∂RXt
∂σ

=

(
λ2

γ2σ
t− 2λ

γσ2
Rt

)

and
∂RXt
∂µ̂

=

((
1

2γ
− λ

γ2σ

)
t+

1

γσ2
Rt

)
.

Note that, for CRRA utility the cumulative excess return on the optimal wealth
is linear with respect to the cumulative excess return on the stock. Moreover, the
other sensitivities have the same monotonicity properties as their counterparts in
Example 6.
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